Feature Optimization of Speech Emotion Recognition
نویسندگان
چکیده
منابع مشابه
Feature Optimization of Speech Emotion Recognition
Speech emotion is divided into four categories, Fear, Happy, Neutral and Surprise in this paper. Traditional features and their statistics are generally applied to recognize speech emotion. In order to quantify each feature’s contribution to emotion recognition, a method based on the Back Propagation (BP) neural network is adopted. Then we can obtain the optimal subset of the features. What’s m...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملFeature Transfer Learning for Speech Emotion Recognition
Speech Emotion Recognition (SER) has achieved some substantial progress in the past few decades since the dawn of emotion and speech research. In many aspects, various research efforts have been made in an attempt to achieve human-like emotion recognition performance in real-life settings. However, with the availability of speech data obtained from different devices and varied acquisition condi...
متن کاملOptimization of Formant Feature Based Speech Recognition
The paper deals with the use of formant features in dynamic time warping based speech recognition. These features can be simply visualized and give a new insight into understanding the reasons of speech recognition errors. The formant feature extraction method, based on the singular prediction polynomials, has been applied in recognition of isolated words. However, the speech recognition perfor...
متن کاملEnhancing Emotion Recognition from Speech through Feature Selection
In the present work we aim at performance optimization of a speaker-independent emotion recognition system through speech feature selection process. Specifically, relying on the speech feature set defined in the Interspeech 2009 Emotion Challenge, we studied the relative importance of the individual speech parameters, and based on their ranking, a subset of speech parameters that offered advant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biomedical Science and Engineering
سال: 2016
ISSN: 1937-6871,1937-688X
DOI: 10.4236/jbise.2016.910b005